
Virtual Virtual Machines

Bertil Folliot,1 Ian Piumarta, Fabio Riccardi

Projet SOR, INRIA Rocquencourt,
B.P. 105, 78153 Le Chesnay Cedex, France.

bertil.folliot@ibp.frfian.piumarta, fabio.riccardig@inria.fr
Keywords: distribution, interoperability, program-
ming languages, virtual machines, operating systems,
research directions.

1 Introduction

This paper originated from a series of discussions about
what will be interesting in systems research during the
next five years.

Systems researchers are seeing less and less scope for
OS kernel hacking, network architectures and commu-
nication paradigms, which have now entered the indus-
trial domain. In trying to answer the question “What’s
left over for us?” we found that there is a lot to do, as
long as we accept a change of focus. Systems can no
longer be a collection of “mechanisms” but rather have
to address problems of engineering, and actively pro-
pose methodologies that enable application program-
mers to produce better products and to solve the emerg-
ing problems of distributed application domains.

We realised first that complexity and cost are driving
quality out of software, and that present solutions will
only introduce more problems later on. At the same
time new applications coming from the wider accep-
tance of distributed computing, and the ubiquitous use
of “intelligent” devices, are presenting new challenges
to programmers—making the job even more difficult.

The result of this reflection is a proposal for a novel
virtual execution environment, capable of efficiently
and safely executing many different programming lan-
guages and paradigms.

It seems to be irrefutable that virtual execution en-
vironments and more abstract programming languages
effectively improve the quality of software while reduc-
ing its cost. This technology has so far been considered
too expensive (in terms of performance), although the
new generation of high-speed processors have in many
cases removed this objection.

1Also with the LIP6, Universités Paris 6 & 7, France.

What remains is the problem of rigidity in VM envi-
ronments, which eventually leads to lack of interoper-
ability. Our proposal renders the VM environment flex-
ible, removing this final objection.

2 The problem

Many new distributed applications—such as coopera-
tive work and multimedia—do not try to exploit distri-
bution to increase performance, but rather to deal ef-
fectively with the geographical distribution of users and
resources, and with security concerns such as data sen-
sitivity, ownership, access rights, copyright, and so on.
Such applications are usually characterised by complex
data models, complex transactions, and dynamic (and
randomly variable) configurations of heterogeneous in-
teracting parties.

Dealing with heterogeneity poses severe obstacles to
interoperability. Java is a step in the right direction,
but it is still too rigid. It uses bytecodes as its dis-
tribution language, which implies a stable virtual ma-
chine that cannot be modified to fit particular appli-
cations. However, a single language (and execution
model) cannot address every problem domain: creating
Web applets, scripting a text editor, and programming
a smart card reader or mobile host support station are
domains in which the effective solutions are very differ-
ent. These solutions require different programming lan-
guages, compiled code representations, data formats,
security checks, and so on.

These different applications should nevertheless be
executed in thesame environment. This reduces re-
source consumption, promotes integration and compo-
nent reuse (internal interoperability) and allows adapta-
tion to new languages, code and data formats (external
interoperability).

3 Virtual virtual machines

We propose a single environment—the virtual virtual
machine (VVM)—supporting target applications built
in almost any “bytecoded” programming language. We
make no assumptions about the origin of these ap-
plications: they might come from a local disk, be
“telecharged” over the Internet, downloaded from a
smart card, and so on.

1



native operating system

virtual OS

virtual processor

language class toolkits/libraries

bytecodes primitives bytecodes primitives

Application 1
(Java)

security
logic

global
rules

language
rules

executive

optimise,
validate...

Java language module Smalltalk language module

Application 2
(Java+Smalltak)

Application 3
(Smalltalk)

VP primitives

system
console

VVM
admin

Figure 1: VVM architecture.

Applications are “typed” with an appropriate exe-
cution model (in accordance with current Web stan
dards). Each application “type” corresponds to a virtual
machine description (aVMlet) which includes a map-
ping for the application’s bytecodes and data onto the
VVM’s executable mechanism and object model, and
definitions of the primitives needed by the language. In-
ternal interoperability is provided by making the data
mapping reversible, allowing object to be shared safely
between languages. VMlets are loaded on demand,
whenever a new application “type” is encountered.

The VVM’s execution mechanism is efficient in
both space and time, translating application bytecodes
into a “direct threaded” representation. This offers
good performance, a significantly smaller footprint than
dynamically-translated native code, is inherently highly
portable, and provides a large “opcode space” for the
executable representation.

The VVM must be able to verify that it is safe to
add a given VMlet (which might have been downloaded
along with the application it supports). This verification
is similar to the static checks performed by a Java VM,
although the VVM must apply these in a dynamic con-
text defined by the VMlet itself. These rules operate
at two levels: verifying the safety of application code,
and (in conjunction with the data mapping defined in
the VMlet) verifying the safety of object sharing be-
tween languages. Access control lists, and “code veri-
fication” prior to execution, are not sufficient to ensure
safety in the virtual machine—since these presuppose

that all VMlets are known in advance.

3.1 Architecture

A simplified diagram of the VVM architecture is shown
in Figure 1.

3.1.1 Virtual Processor

The core machine is the VP, which provides a low-level
execution engine. It has a simple intrinsic objet model
(and corresponding object memory), instruction set and
execution model. These are designed to be very gen-
eral, supporting the many different object and execu-
tion models found in various classes of programming
language—without corresponding precisely to any of
them. The bytecodes supported by any given virtual
machine are mapped onto the underlying VP object and
execution models.

3.1.2 Virtual operating system

The VP runs the virtual operating system (VOS), which
provides an abstraction over the native operating sys-
tem’s facilities. VOS services are obtained by VP pro-
grams by invoking virtual processor primitives. For ex-
ample, the virtual operating system (VOS) is in charge
of handling the VP scheduling and of administering
protected resources. It is also responsible for dealing
with reconfiguration when a new VMlet or toolkit is
loaded.

2



The VP provides “introspective” instructions that can
be used by trusted software (such as the VOS) to moni-
tor and manage the operation of the VVM.

3.1.3 Virtual console

The VP also includes a tiny, but complete, program-
ming and command language which we call the “virtual
console”. This language is used by a “VVM administra-
tor” to perform manual interrogation and configuration
of the VVM, and is used to implement the lowest layer
of the VVM software. Because of the high degree of in-
ternal interoperability in the VVM, the higher layers of
software (extended VP instructions in the VP libraries,
bytecodes in the VMlets, and the security module) can
be written in whatever is the most appropriate language.

3.1.4 Language toolkits

The core VP functionality can be extended with li-
braries (or “toolkits”) that implement features common
to an entire family of programming languages. Typi-
cal VP libraries provide cloning, class objects with in-
stantiation, delegation or inheritance mechanisms, and
special data representations such as tagged “immediate”
types. Once defined, a library instruction can be used as
if it were a core VP instruction; in effect, the VP instruc-
tions are used to define new VP instructions.

3.1.5 VMlets

Support for each specific language within a family is
provided by a VMlet that defines the bytecodes and
primitives required in order to execute compiled appli-
cations written in that language. Each language byte-
code maps onto a single VP instruction. Where intrinsic
(or toolkit) instructions are not appropriate, the VP in-
struction set is extended with new instructions (defined
by the VMlet) in terms of existing VP instructions.

3.1.6 Application programs

The application bytecodes of each language are dy-
namically translated into the VP’s executable instruc-
tion representation. Since all applications are translated
into a single executable format (regardless of which VM
defines their semantics), a single execution mechanism
(defined by the VVM) can be used to run the code.

3.1.7 Security module

The VOS cooperates with the security module to per-
form the “management” tasks that are required to en-
sure (above all) safety and security. The global (inter-
language) aspects of these tasks are described by a set
of rules in the security module itself.

Rules relating to individual languages are provided
by each VMlet. These rules describe the security con-
straints for applications running on top of that VM, and
how the VP is allowed to manipulate the objects belong-
ing to this VM. Applying these rules transitively allows
safe interoperability and exchange of data between ap-
plications running on different VMs.

3.2 VVM operation

When an application arrives at the VVM, its “type” is
checked. If the VVM has not already loaded the appro-
priate VMlet, then it is located and loaded.

The security module verifies the VMlet according to
the global rules, to ensure that the safety of the VVM is
not compromised.

The VMlet defines translations from the VM byte-
codes to the execution mechanisms of the virtual pro-
cessor (VP). The VP’s instruction set is extended, if
necessary, with operations defined either by the VMlet
itself or imported from one or more VP libraries con-
taining common operations for the class of languages to
which the VM belongs. (The VMlet also defines how its
VM’s object model maps onto the VP’s object model;
making these mappings “reversible” allows the VVM
to map from the VP’s model back to each VM’s model,
permitting safe internal interoperability.)

The application is then loaded. Language-specific se-
curity rules, defined by the VMlet, are applied to the
application’s bytecodes (and data if appropriate).

Application execution can now begin. Methods (pro-
cedures, member functions, or whatever else the VM
might call its units of executable code) are dynamically
translated, on demand, into the corresponding VP in-
structions for execution.

The VMlet provides language-specific primitives for
its applications. These are defined in terms of the VOS
services, and the intrinsic primitives provided by the
VP.

The VOS abstracts the underlying operating system.
It provides each VM’s primitives with controlled access
to the machine’s resources: communications, filestore,

3



and so on. It is also responsible for allocating and man-
aging the resources needed by the VVM itself.

4 Related work

IBM and Taligent have announced plans to build a Uni-
versal Virtual Machine capable of executing programs
written in Java, Smalltalk and Visual Basic. Internal
interoperability permits inter-language reuse of com-
ponents, and external interoperability allows ”applets”
built in any of these languages to be downloaded and
executed.

5 Conclusions

This document proposes a “universal”, or “virtual” vir-
tual machine that provides a maximum of support for
many essential aspects of the emerging distributed ap-
plication domains:

External Interoperability: for smart cards, mobile
computing, cooperative applications, and other kinds of
problem related to the exchange of functionality as well
as the data that it operates on.

Internal interoperability: for applications that need
to exchange or manipulate data between components
compiled into different bytecoded representations, and
to promote reuse of components between languages.

Adaptability: to extend or adapt existing services in
(for example) embedded systems.

Reusability: in the VM implementations, applica-
tion components, and operating system services. This
in turn leads to. . .

Reliability: since the increased costs of develop-
ing each high-quality component is amortised over the
many uses of that component within a single integrated
environment;

Extensibility: not only in application components,
but in the mechanisms used to execute them. Embed-
ded systems in particular can benefit from an execution
environment that can be upgraded easily, specialised for
each application, or dynamically reconfigured depend-
ing on the needs of the host system at any particular
moment.

6 Future work

A comparative analysis of current VM and dynamic
object-oriented language implementations would be the

first step towards a VVM.
A study of the implementation techniques for repre-

sentative languages belonging to several different “fam-
ilies” (Java, Smalltalk, ML, and so on) will lead to a de-
sign of the intrinsic VP instructions and object model.
From this we can develop the “virtual console” and its
“language”.

The design of the VOS requires an analysis of lan-
guages’ runtime requirements, and a study of the ap-
propriate abstractions of native OS services and their
interaction with the VVM.

The appropriate introspection and security features of
the VVM can build on current reflective system tech-
niques. The “morphology” of the global and VMlet
rules should be designed so that these are functional
while remaining simple, readable, andprovable.

7 References

[Atkinson 96] Atkinson, M.P. et al,Design issues for
persistent Java: A type-safe, object-oriented,
orthogonally persistent system, in Proc. 7th
International Workshop on Persistent Object Systems
(POS 7).

[Feldt 97] Robert Feldt,Dependable Software Systems by
means of AI techniques, 3rd Cabernet Plenary
Workshop, Rennes, April 1997

[IBM 97] IBM plans cross-platform competitor to Java,
InfoWorld Electronic, April 1997.
http://www.computerworld.com/search/
AT-html/online/9706/970613ibmplan.html

[JAVA 96] Arnold, K. and Gosling, J.The Java
Programming Language, Addison Wesley, 1996. ISBN
0-201-63455-4

[Maziere 97] David Mazieres, Frans Kaashoek,Secure
Applications Need Flexible Operating Systems, 6th
Workshop on Hot Topics in Operating Systems
(HotOS-VI), May 1997, Cape Cod, Massachusetts.

[Seltzer 97] Margo Seltzer, Christopher Small,
Self-Modifying and Self-Adapting Operating Systems,
6th Workshop on Hot Topics in Operating Systems
(HotOS-VI), May 1997, Cape Cod, Massachusetts.

4


